

PII: S0277-5387(97)00077-6

COMMUNICATION

Synthesis and characterization of the novel type of heterometal clusters $[(\mu_3-S)RuCoM(CO)_8$ $CpC(O)]_2C_6H_4$ (M = Mo, W) and crystal structure of $[(\mu_3-S)RuCoW(CO)_8$ $CpC(O)]_2C_6H_4$

Er-Run Ding,^a Yuan-Qi Yin^{a*} and Jie Sun^b

^a Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China

^b Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China

(Received 13 November 1996; accepted 13 February 1997)

Abstract—The reaction of $(\mu_3$ -S)RuCo₂(CO)₉ (1) with [NaM(CO)₃CpC(O)]₂C₆H₄ [(M = Mo (2), M = W (3)] in refluxing THF gave two new carbonyl clusters, $[(\mu_3$ -S)RuCoM(CO)₈CpC(O)]₂C₆H₄ [M = Mo (4), M = W (5)]. The structure of cluster 5 was established by X-ray diffraction analysis. © 1997 Elsevier Science Ltd

Keywords: sulfur; ruthenium; cobalt; molybdenum; tungsten; carbonyl cluster.

In recent years transition-metal cluster complexes have been receiving considerable attention because of their unusual structures and reactions [1–3]. Among these, however, there are very few cluster complexes containing the tetrahedral skeleton SRuCoM (M = Mo, W). To the best of our knowledge, no compound containing two tetrahedral skeletons formed mixed-metal clusters connected by CpC(O)C₆H₄ C(O)Cp has been reported. We describe here the synthesis and characterization of this novel type of cluster complex.

In the presence of ethanethiol $Co_2(CO)_8$ reacted with $Ru_3(CO)_{12}$ under 200 atm and 160°C in hexane giving the cluster $SRuCo_2(CO)_9$ (80%) [4]. The novel metal fragment exchange reagents of $[NaM(CO)_3$ $CpC(O)]_2C_6H_4$ [M = Mo (2), M = W (3)] were formed in refluxing THF by $M(CO)_6$ (M = Mo, W) reacted with $[NaCpC(O)]_2C_6H_4$ which was prepared from NaCp and dimethyl terephthalate in refluxing THF. The addition of an equimolar amount of (μ_3 -S) RuCo₂(CO)₉ to the THF solution of complexes 2 or 3 produced the title complexes 4 and 5 in moderate yields, which could also be prepared at ambient temperature, but in low yield (10–20%, Scheme 1) [5]. The clusters 4 and 5 are air-stable red solids. They are soluble in polar solvents like THF, toluene and chloroform, etc.

The structural features of this new series of mixedmetal clusters have been established by the X-ray diffraction analysis of a suitable crystal of $[(\mu_3-S)Ru$ - $CoMo(CO)_8CpC(O)]_2C_6H_4$. The structure of cluster 5 contains two independent, centrosymmetric molecules, each of which contains two tetrahedral skeletons connected through the $CpC(O)C_6H_4(O)Cp$ bridge (Fig. 1). The tetrahedral skeleton is composed of S, Ru, Co and W atoms. The slightly distorted triangular RuCoW is capped by a μ_3 -bond sulfide ligand. The Ru and Co atoms were coordinated by three two-electron carbonyl ligands. The W atom was coordinated by two carbonyl ligands and one fiveelectron carbonylcyclopentadienyl ligand. The capping sulfide atom bonds to the Ru, Co and W atoms with bond lengths 2.320(4), 2.197(4) and 2.376(4) Å,

^{*} Author to whom correspondence should be addressed.

respectively. The bond length of Ru—S is roughly equal to that in the known complex HRu₃(CO)₉ $[\mu_3$ -S)Mo(CO)₃(N(CH₃)₂] (Ru—S = 2.334 Å), but shorter than that of the typical Ru—S bond length [6]. The W atom-Cp ring centroid distance is 1.970 Å. Since the π -system of the bridge —CO—C₆H₄—CO would be quite well conjugated with that of the Cp ring and thus the bond length of C(5)—C(6) (1.46 Å) and C(6)—C(7) (1.47) becomes much shorter than a normal C—C single bond (1.54 Å), but longer than a C=C double bond (1.34 Å). Cluster **5** contains a total of 48 × 2 electrons and is electronically saturated.

The similar spectral characterization of compounds 4 and 5 suggests the same configuration for these clusters. No double cluster complexes containing tetrahedral subcluster cores SRuCoM (M = Mo, W) have been reported, although a few such single cluster complexes have appeared in the literature, but without crystal structures [4]. The IR spectra of clusters 4 and 5 all showed intense terminal carbonyl absorption bands in the range 1899–2085 cm^{-1} and all of them also showed corresponding carbonyl absorption bands for the acetyl at 1650 and 1661 cm⁻¹, which were much lower than that of the RC=O in known clusters (μ_3 -CPh)FeCoM(CO)₈[CpC(O)R] [7]. This is because of the conjugative effect of the aromatic ring in these complexes. The 'H NMR assignment of substituted cyclopentadienyls appeared downfield relative to that of unsubstituted cyclopentadienyls [8], which was due to the shielding effect of the π -system $-C(O)C_6H_4C(O)$. It should be mentioned that the molecular structure of 5 is that of an achiral molecule

Fig. 1.

containing a symmetric center. However, the ¹H NMR spectra of the cyclopentadienyl protons of 4 and 5 show an A_2BB' pattern instead of an A_2B_2 pattern, which is because of the presence of the chiral tetrahedral subcluster SRuCoM in these clusters [9].

Acknowledgement—We are grateful to the Laboratory of Organometallic Chemistry at Shanghai Institute of Organic Chemistry, Chinese Academy of Science for the financial support of our work.

REFERENCES

- 1. Vahrenkamp, H., Adv. Organomet. Chem. 1983, 22, 169.
- 2. Huttner, G. and Knoll, K., Angew. Chem., Int. Edn Engl. 1987, 26, 743.
- Braga, D., Dyson, P. J. and Grepioni, F., Chem. Rev. 1994, 94, 1585.
- 4. Roland, E., Bernhardt, W. and Vahrenkamp, H., *Chem. Ber.* 1986, **119**, 2566.
- 5. All steps were performed under nitrogen in dried, N₂-saturated solvent. Characterization data for [SRuCoMo(CO)₈(C₃H₄)C(O)]₂C₆H₄ (4): yield 49%. IR (KBr): 2085vs, 2009vs, 1907m, 1650m, (C=O) cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): δ 5.32–6.03 (m, 8H, 2Cp), δ 7.94 (s, 4H, Ph). ¹³C NMR (CDCl₃, 300 MHz): δ 215.2 and 208.15 (t-CO), δ 193.40 and 188.34 (C=O), δ 140.87 and 128.40 (Ph), δ 94.41, 93.61, 91.73, 86.66 (Cp). MS (FAB, Ru¹⁰²): 1230 (M⁺-2CO), 1174 (M⁺-4CO). For [SRuCoW(CO)₈C₅H₄C(O)]₂C₆ H₄ (5): Yield: 327 mg (42%). IR (KBr disk):

2083vs, 2040vs, 2002vs, 1899m, 1661m (C=O) cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): δ 5.35–6.01 (m, 8H, 2Cp), δ 7.92 (s, 4H, Ph). Satisfactory C/H analyses were obtained for all compounds. Rigaku AFC7R diffractometer [Mo- K_{α} radiation is 0.71069 Å graphite monochromator, ω -2 θ scan technique], solution with Patterson Methods (DIRDIF92PATTY), refinement with Full-Matrix least-squares. Crystal data for: $C_{34}H_{12}O_{18}S_2Ru_2W_2Co_2Mr = 1460.28$, crystal system triclinic, space group P1, a = 12.688(4), b = 20.290(7), c = 9.429(3) Å, $\alpha = 99.78(3),$ $\beta = 90.64(2), \quad \gamma = 78.28(3)^\circ, \quad V = 2341(1) \quad \text{Å}^3, \\ Z = 2, \quad Dc = 2.071 \quad \text{g} \quad \text{cm}^{-3}, \quad \mu = 63.73 \quad \text{cm}^{-1},$ $2\theta_{\text{max}} = 45.0$. Crystal size $0.20 \times 0.20 \times 0.40$ mm. Of the 6460 reflections collected, 6123 were unique $(R_{int} = 0.031)$. The intensities of three representative reflection were measured after every 200 reflections. Refinement converged at final R = 0.042, Rw = 0.063. The minimum and maximum final electron densities were -0.79 and 1.28 e Å $^{-3}$. The calculations were performed using the teXsan crystallographic software package of Molecular Structure Corporation. The nonhydrogen atoms were refined anistropically. Hydrogen atoms were included but not refined.

- Hoferkamp, L. A., Rheinwald, G., Stoeckli-Even, H. and Suss-Fink, G., Organometallics 1996, 15, 704.
- Wu, H. P. and Yin, Y. Q., J. Organomet. Chem. 1995, 498, 119.
- Blumhofer, R., Fischer, K. and Vahrenkamp, H., Chem. Ber. 1986, 119, 194.
- 9. Beurich, H. and Vahrenkamp, H., Angew. Chem., Int. Edn Engl. 1978, 17, 863.